By Topic

Remote feature learning for mobile re-identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vernier, M. ; Univ. of Udine, Udine, Italy ; Martinel, N. ; Micheloni, C. ; Foresti, G.L.

This work introduces a novel method for person re-identification using embedded smart cameras. State-of-the-art methods address the re-identification problem using global and local features, metric learning and feature transformation algorithms. Such methods require advanced systems with high computational capabilities. Nowadays, there is a growing interest in security applications using embedded cameras. Motivated by this we propose to study a new system that addresses the challenges posed by the reidentification problem using devices (e.g. smartphones, etc.) that have limited resources. In this work we introduce a novel client-server system that exploits a feature learning method to achieve a two-fold objective: (i) maximize the re-identification performance over time and (ii) reduce the required computational costs. In the training phase, state-of-the-art features are selected considering both the device capabilities and re-identification performance. During the detection phase, the re-identification performance are maximized by selecting the best features for a given input image. To demonstrate the performance of the proposed method we conduct the experiments using different mobile devices. Statistics about feature extraction and feature matching are presented together with re-identification results.

Published in:

Distributed Smart Cameras (ICDSC), 2013 Seventh International Conference on

Date of Conference:

Oct. 29 2013-Nov. 1 2013