By Topic

Design of a Wearable Device for Reading Positive Expressions from Facial EMG Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gruebler, A. ; Sch. of Comput. Sci. & Electron. Eng., Univ. of Essex, Colchester, UK ; Suzuki, K.

In this paper we present the design of a wearable device that reads positive facial expressions using physiological signals. We first analyze facial morphology in 3 dimensions and facial electromyographic signals on different facial locations and show that we can detect electromyographic signals with high amplitude on areas of low facial mobility on the side of the face, which are correlated to ones obtained from electrodes on traditional surface electromyographic capturing positions on top of facial muscles on the front of the face. We use a multi-attribute decision-making method to find adequate electrode positions on the side of face to capture these signals. Based on this analysis, we design and implement an ergonomic wearable device with high reliability. Because the signals are recorded distally, the proposed device uses independent component analysis and an artificial neural network to analyze them and achieve a high facial expression recognition rate on the side of the face. The recognized emotional facial expressions through the wearable interface device can be recorded during therapeutic interventions and for long-term facial expression recognition to quantify and infer the user's affective state in order to support medical professionals.

Published in:

Affective Computing, IEEE Transactions on  (Volume:5 ,  Issue: 3 )