By Topic

Robust Object Tracking via Sparse Collaborative Appearance Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Zhong ; Sch. of Inf. & Commun. Eng., Fac. of Electron. Inf. & Electr. Eng., Dalian Univ. of Technol., Dalian, China ; Huchuan Lu ; Ming-Hsuan Yang

In this paper, we propose a robust object tracking algorithm based on a sparse collaborative model that exploits both holistic templates and local representations to account for drastic appearance changes. Within the proposed collaborative appearance model, we develop a sparse discriminative classifier (SDC) and sparse generative model (SGM) for object tracking. In the SDC module, we present a classifier that separates the foreground object from the background based on holistic templates. In the SGM module, we propose a histogram-based method that takes the spatial information of each local patch into consideration. The update scheme considers both the most recent observations and original templates, thereby enabling the proposed algorithm to deal with appearance changes effectively and alleviate the tracking drift problem. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 5 )
Biometrics Compendium, IEEE