By Topic

GNSS-R Altimeter Based on Doppler Multi-looking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
D'Addio, S. ; Electr. Dept., Eur. Space Agency, Noordwijk, Netherlands ; Martin-Neira, M. ; di Bisceglie, M. ; Galdi, C.
more authors

Measuring ocean mesoscale variability is one of the main objectives of next generation satellite altimeters. Current radar altimeters make observations only at the nadir sub-satellite ground track, which is not sufficient to sample the ocean surface with the required spatial and temporal sampling. The GNSS-R concept has been proposed as an alternative observation system in order to overcome this limitation, since it allows performing altimetry along several points simultaneously over a very wide swath. Latest proposed GNSS-R altimeter configurations allow measuring sea height with an accuracy of few decimeters over spatial scales of 50-100 km, by means of a single-pass. This paper proposes an innovative processing and retracking concept for GNSS-R altimeters based on the acquisition of the full delay-Doppler map (DDM), which allows to acquire multiple waveforms at different Doppler frequencies, whose footprints are located outside the typical pulse-limited region. The proposed processing adapts the Synthetic Aperture Radar (SAR) delay-Doppler concept of spaceborne radar altimeters for use in a GNSS-R system. This processing yields additional multi-look with respect to conventional GNSS-R concepts and translates into an improvement of the altimetry performance estimated to be at least 25%-30%, and even higher, depending on the wanted along-track spatial resolution. The proposed processing can also provide measurements with high spatial resolution at best possible performance, and more generally, offers various possibilities for optimal trade-off between spatial-resolution and height estimation accuracy.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 5 )