Cart (Loading....) | Create Account
Close category search window
 

Accurate Harmonic/Interharmonic Estimation Using DFT-Based Group-Harmonics Energy Diffusion Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hsiung Cheng Lin ; Dept. of Electron. Eng., Nat. Chin-Yi Univ. of Technol., Taichung, Taiwan

The discrete Fourier transform (DFT) is still a widely used tool for analyzing and measuring both stationary and transient signals in power systems. However, the misapplications of DFT can lead to incorrect results caused by some problems, such as aliasing effect, spectral leakage, and picket-fence effect. This paper establishes a relationship between DFT-based spilled energy and harmonics/noninteger harmonics using the numerical induction method. Based on this study, a strategy of group-harmonics energy diffusion algorithm has been developed for both stationary and nonstationary harmonic/interharmonic evaluation in power systems. Especially, the frequency deviation range is used for frequency estimation, and the restored amplitude is used for retrieving dispersed amplitude. Accordingly, the harmonic/interharmonic frequency and its respective amplitude component can be accurately estimated using a simple mathematic computation. The numerical examples are presented to verify the performance of the proposed algorithm in terms of speed, accuracy, and efficiency.

Published in:

Electrical and Computer Engineering, Canadian Journal of  (Volume:36 ,  Issue: 4 )

Date of Publication:

Fall 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.