By Topic

High frequency ultrasound imaging using an active optical detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hamilton, J.D. ; Dept. of Phys., Michigan Univ., Ann Arbor, MI, USA ; Brooks, Cameron J. ; Vossler, Gerald L. ; O'Donnell, M.

Optical detection of ultrasound has numerous advantages over traditional piezoelectric methods. These systems offer noncontact inspection, rapid scanning capabilities, fine spatial sampling, and large bandwidths. In addition, difficulties associated with conventional ultrasound imaging systems such as cross-talk between elements, electrical connections, and electromechanical resonances are greatly reduced or even eliminated. Because of this, high frequency phased arrays for ultrasound detection can be emulated by accurately positioning and focusing optical beams on a suitable surface, which defines array elements. However, optical systems have lower sensitivity than their piezoelectric counterparts, limiting their widespread use in ultrasound imaging. Active optical detection offers a solution. An active ultrasound detector consisting of a neodymium-doped glass waveguide laser with an optical demodulation system, was built demonstrating enhanced sensitivity while preserving the benefits of traditional passive optical detection.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:45 ,  Issue: 3 )