By Topic

Circuit simulations of the use of explosive formed fuses to obtain high voltage pulses for high impedance loads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Degnan, J.H. ; Phillips Res., Kirtland AFB, NM, USA ; Kiuttu, G.F. ; Turchi, P.J. ; Graham, J.D.
more authors

Summary form only given. Explosive Formed Fuses (EFFs) use conducting elements that are deformed by explosive pressure (typically, against dielectric dies). This causes the fuse geometry to change, so that the conducting element cross section decreases. This enables a higher ratio of current conduction to current interrupt time than for normal fuses, and it enables more control of when current interruption occurs. In combination with a suitable output closing switch, EFFs can be used to obtain several hundred kilovolt voltage pulses from inductive stores to drive several ohm loads. With proper choices of inductive store, EFF geometry and material, and output closing switch features, such a voltage pulse can be approximately flat topped for microsecond duration, and have a small fraction of microsecond risetime. We present theoretical analysis and circuit simulations which illustrate this, using scaled empirical EFF parameters, for inductive stores in the 1 Weber flux, several hundred nanohenry range. The circuit simulations were done using Microcap-4, with user defined elements. These simulations were done with static inductive stores, and with explosive magnetic flux compression generators driving inductive stores.

Published in:

Plasma Science, 1998. 25th Anniversary. IEEE Conference Record - Abstracts. 1998 IEEE International on

Date of Conference:

1-4 June 1998