By Topic

Saliency-Based Selection of Gradient Vector Flow Paths for Content Aware Image Resizing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sebastiano Battiato ; Dept. of Math. & Comput. Sci., Univ. of Catania, Catania, Italy ; Giovanni Maria Farinella ; Giovanni Puglisi ; Daniele Ravi

Content-aware image resizing techniques allow to take into account the visual content of images during the resizing process. The basic idea beyond these algorithms is the removal of vertical and/or horizontal paths of pixels (i.e., seams) containing low salient information. In this paper, we present a method which exploits the gradient vector flow (GVF) of the image to establish the paths to be considered during the resizing. The relevance of each GVF path is straightforward derived from an energy map related to the magnitude of the GVF associated to the image to be resized. To make more relevant, the visual content of the images during the content-aware resizing, we also propose to select the generated GVF paths based on their visual saliency properties. In this way, visually important image regions are better preserved in the final resized image. The proposed technique has been tested, both qualitatively and quantitatively, by considering a representative data set of 1000 images labeled with corresponding salient objects (i.e., ground-truth maps). Experimental results demonstrate that our method preserves crucial salient regions better than other state-of-the-art algorithms.

Published in:

IEEE Transactions on Image Processing  (Volume:23 ,  Issue: 5 )