By Topic

Single-Image Superresolution of Natural Stochastic Textures Based on Fractional Brownian Motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zachevsky, I. ; Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Zeevi, Y.Y.

Texture enhancement presents an ongoing challenge, in spite of the considerable progress made in recent years. Whereas most of the effort has been devoted so far to enhancement of regular textures, stochastic textures that are encountered in most natural images, still pose an outstanding problem. The purpose of enhancement of stochastic textures is to recover details, which were lost during the acquisition of the image. In this paper, a texture model, based on fractional Brownian motion (fBm), is proposed. The model is global and does not entail using image patches. The fBm is a self-similar stochastic process. Self-similarity is known to characterize a large class of natural textures. The fBm-based model is evaluated and a single-image regularized superresolution algorithm is derived. The proposed algorithm is useful for enhancement of a wide range of textures. Its performance is compared with single-image superresolution methods and its advantages are highlighted.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 5 )