By Topic

Distribution, Data, Deployment: Software Architecture Convergence in Big Data Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gorton, I. ; CMU, Pittsburgh ; Klein, J.

Exponential data growth from the Internet, low cost sensors, and high fidelity instruments has fueled the development of advanced analytics operating on vast data repositories. These analytics bring business benefits ranging from web content personalization to predictive maintenance of aircraft components. To construct the data repositories that underpin these systems, there has been rapid innovation in distributed data management technologies, employing schema-less data models and relaxing consistency guarantees to satisfy scalability and availability requirements. This paper describes the challenges of these "big data" systems that confront software architects. We show how distributed software architecture quality attributes are tightly linked to the both the data and deployment architectures. This causes a consolidation of concerns, and designs must be closely harmonized across these three structures to satisfy quality requirements.

Published in:

Software, IEEE  (Volume:PP ,  Issue: 99 )