By Topic

A Semantically Enriched Context-Aware OER Recommendation Strategy and Its Application to a Computer Science OER Repository

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ruiz-Iniesta, A. ; Department of Software Engineering and Artificial Intelligence, Complutense University of Madrid, Spain ; Jimenez-Diaz, G. ; Gomez-Albarran, M.

This paper describes a knowledge-based strategy for recommending educational resources—worked problems, exercises, quiz questions, and lecture notes—to learners in the first two courses in the introductory sequence of a computer science major (CS1 and CS2). The goal of the recommendation strategy is to provide support for personalized access to the resources that exist in open educational repositories. The strategy uses: 1) a description of the resources based on metadata standards enriched by ontology-based semantic indexing, and 2) contextual information about the user (her knowledge of that particular field of learning). The results of an experimental analysis of the strategy's performance are presented. These demonstrate that the proposed strategy offers a high level of personalization and can be adapted to the user. An application of the strategy to a repository of computer science open educational resources was well received by both educators and students and had promising effects on the student performance and dropout rates.

Published in:

Education, IEEE Transactions on  (Volume:PP ,  Issue: 99 )