By Topic

The Natural Helmholtz-Hodge Decomposition for Open-Boundary Flow Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bhatia, H. ; Sci. Comput. & Imaging Inst., Univ. of Utah, Salt Lake City, UT, USA ; Pascucci, V. ; Bremer, P.-T.

The Helmholtz-Hodge decomposition (HHD), which describes a flow as the sum of an incompressible, an irrotational, and a harmonic flow, is a fundamental tool for simulation and analysis. Unfortunately, for bounded domains, the HHD is not uniquely defined, traditionally, boundary conditions are imposed to obtain a unique solution. However, in general, the boundary conditions used during the simulation may not be known known, or the simulation may use open boundary conditions. In these cases, the flow imposed by traditional boundary conditions may not be compatible with the given data, which leads to sometimes drastic artifacts and distortions in all three components, hence producing unphysical results. This paper proposes the natural HHD, which is defined by separating the flow into internal and external components. Using a completely data-driven approach, the proposed technique obtains uniqueness without assuming boundary conditions a priori. As a result, it enables a reliable and artifact-free analysis for flows with open boundaries or unknown boundary conditions. Furthermore, our approach computes the HHD on a point-wise basis in contrast to the existing global techniques, and thus supports computing inexpensive local approximations for any subset of the domain. Finally, the technique is easy to implement for a variety of spatial discretizations and interpolated fields in both two and three dimensions.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:20 ,  Issue: 11 )