Cart (Loading....) | Create Account
Close category search window

A general algorithm for dynamic feedback linearization of robots with elastic joints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
De Luca, A. ; Dipartimento di Inf. e Sistemistica, Rome Univ., Italy ; Lucibello, P.

For a general class of robots with elastic joints, we introduce an inversion algorithm for the synthesis of a dynamic feedback control law that gives input-output decoupling and full state linearization. Control design is performed directly on the second-order robot dynamic equations. The linearizing control law is expressed in terms of the original model components and of their time derivatives, allowing an efficient organization of computations. A tight upper bound for the dimension of the needed dynamic compensator is also obtained

Published in:

Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on  (Volume:1 )

Date of Conference:

16-20 May 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.