By Topic

Automatic Identification of Large Fragments in a Pile of Broken Rock Using a Time-of-Flight Camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
McKinnon, C. ; Inst. for Aerosp. Studies, Univ. of Toronto, Toronto, ON, Canada ; Marshall, J.A.

This paper presents a solution to part of the problem of making robotic or semi-robotic digging equipment less dependant on human supervision. A method is described for identifying rocks of a certain size that may affect digging efficiency or require special handling. The process involves three main steps. First, by using range and intensity data from a time-of-flight (TOF) camera, a feature descriptor is used to rank points and separate regions surrounding high scoring points. This allows a wide range of rocks to be recognized because features can represent a whole or just part of a rock. Second, these points are filtered to extract only points thought to belong to the large object. Finally, a check is carried out to verify that the resultant point cloud actually represents a rock. Results are presented from field testing on piles of fragmented rock.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 3 )