By Topic

Unified Framework of Mean-Field Formulations for Optimal Multi-Period Mean-Variance Portfolio Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiangyu Cui ; Sch. of Stat. & Manage., Shanghai Univ. of Finance & Econ., Shanghai, China ; Xun Li ; Duan Li

When a dynamic optimization problem is not decomposable by a stage-wise backward recursion, it is nonseparable in the sense of dynamic programming. The classical dynamic programming-based optimal stochastic control methods would fail in such nonseparable situations as the principle of optimality no longer applies. Among these notorious nonseparable problems, the dynamic mean-variance portfolio selection formulation had posed a great challenge to our research community until recently. Different from the existing literature that invokes embedding schemes and auxiliary parametric formulations to solve the dynamic mean-variance portfolio selection formulation, we propose in this paper a novel mean-field framework that offers a more efficient modeling tool and a more accurate solution scheme in tackling directly the issue of nonseparability and deriving the optimal policies analytically for the multi-period mean-variance-type portfolio selection problems.

Published in:

Automatic Control, IEEE Transactions on  (Volume:59 ,  Issue: 7 )