Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Random Set Methods: Estimation of Multiple Extended Objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Granstrom, K. ; Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden ; Lundquist, C. ; Gustafsson, F. ; Orguner, U.

Random set-based methods have provided a rigorous Bayesian framework and have been used extensively in the last decade for point object estimation. In this article, we emphasize that the same methodology offers an equally powerful approach to estimation of so-called extended objects, i.e., objects that result in multiple detections on the sensor side. Building upon the analogy between Bayesian state estimation of a single object and random finite set (RFS) estimation for multiple objects, we give a tutorial on random set methods with an emphasis on multiple-extended-object estimation. The capabilities are illustrated on a simple yet insightful real-life example with laser range data containing several occlusions.

Published in:

Robotics & Automation Magazine, IEEE  (Volume:21 ,  Issue: 2 )