By Topic

CAD-based computer vision: from CAD models to relational graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. J. Flynn ; Dept. of Comput. Sci., Michigan State Univ., East Lansing, MI, USA ; A. K. Jain

The topic of model-building for 3-D objects is examined. Most 3-D object recognition systems construct models either manually or by training. Neither approach has been very satisfactory, particularly in designing object recognition systems which can handle a large number of objects. Recent interest in integrating mechanical CAD systems and vision systems has led to a third type of model building for vision: adaptation of preexisting CAD models of objects for recognition. If a solid model of an object to be recognized is already available in a manufacturing database, then it should be possible to infer automatically a model appropriate for vision tasks from the manufacturing model. Such a system has been developed. It uses 3-D object descriptions created on a commercial CAD system and expressed in both the industry-standard IGES form and a polyhedral approximation and performs geometric inferencing to obtain a relational graph representation of the object which can be stored in a database of models for object recognition. Relational graph models contain both view-independent information extracted from the IGES description and view-dependent information (patch areas) extracted from synthetic views of the object. It is argued that such a system is needed to efficiently create a large database (more than 100 objects) of 3-D models to evaluate matching strategies.<>

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:13 ,  Issue: 2 )