By Topic

Study of Stresses and Plasticity in Through-Silicon Via Structures for 3D Interconnects by X-Ray Micro-Beam Diffraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Tengfei Jiang ; Microelectron. Res. Center, Univ. of Texas at Austin, Austin, TX, USA ; Chenglin Wu ; Tamura, N. ; Kunz, M.
more authors

X-ray microbeam diffraction measurements were conducted for copper (Cu) through-silicon via (TSV) structures. This technique has the unique capability to measure stress and deformation in Cu and in silicon with submicron resolution, which enables direct observation of the local plasticity in Cu and the deformation induced by thermal stresses in TSV structures. Grain growth in Cu vias was found to play an important role in controlling the stress relaxation during thermal cycling and, thus, the residual stress and plasticity in the TSV structure. The implication of the local plasticity on TSV reliability is discussed based on the results from this study and finite element analysis.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:14 ,  Issue: 2 )