By Topic

Example-Based Super-Resolution Land Cover Mapping Using Support Vector Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yihang Zhang ; Key Lab. of Monitoring & Estimate for Environ. & Disaster of Hubei Province, Inst. of Geodesy & Geophys., Wuhan, China ; Yun Du ; Feng Ling ; Shiming Fang
more authors

Super-resolution mapping (SRM) is a promising technique to generate a fine resolution land cover map from coarse fractional images by predicting the spatial locations of different land cover classes at subpixel scale. In most cases, SRM is accomplished by using the spatial dependence principle, which is a simple method to describe the spatial patterns of different land cover classes. However, the spatial dependence principle used in existing SRM models does not fully reflect the real-world situations, making the resultant fine resolution land cover map often have uncertainty. In this paper, an example-based SRM model using support vector regression (SVR_SRM) was proposed. Without directly using an explicit formulation to describe the prior information about the subpixel spatial pattern, SVR_SRM generates a fine resolution land cover map from coarse fractional images, by learning the nonlinear relationships between the coarse fractional pixels and corresponding labeled subpixels from the selected best-match training data. Based on the experiments of two subset images of National Land Cover Database (NLCD) 2001 and a subset of real hyperspectral Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image, the performance of SVR_SRM was evaluated by comparing with the traditional pixel-based hard classification (HC) and several existing typical SRM algorithms. The results show that SVR_SRM can generate fine resolution land cover maps with more detailed spatial information and higher accuracy at different spatial scales.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:7 ,  Issue: 4 )