By Topic

Verifying safety of interconnected passive systems using SOS programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Coogan, S. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, Berkeley, CA, USA ; Arcak, M.

We consider a network of interconnected dynamical subsystems with a state-space safety constraint and propose a verification technique that constructs a (robustly) invariant set verifying safety. The invariant set is a sublevel set of a Lyapunov function constructed from local storage functions for each subsystem. Our approach requires only knowledge of a local passivity property for each subsystem and the static interconnection matrix for the network, and we pose the safety verification as a sum-of-squares (SOS) feasibility problem. We consider first the case when, in the absence of disturbance, the unique equilibrium of the network is known. We then extend these results to the case when the equilibrium of the networked system is unknown.

Published in:

Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on

Date of Conference:

10-13 Dec. 2013