By Topic

Residential Energy Consumption Scheduling: A Coupled-Constraint Game Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ruilong Deng ; State Key Lab. of Ind. Control Technol., Zhejiang Univ., Hangzhou, China ; Zaiyue Yang ; Jiming Chen ; Asr, N.R.
more authors

This paper investigates the residential energy consumption scheduling problem, which is formulated as a coupled-constraint game by taking the interaction among users and the temporally-coupled constraint into consideration. The proposed solution consists of two parts. Firstly, dual decomposition is applied to transform the original coupled-constraint game into a decoupled one. Then, Nash equilibrium of the decoupled game is proven to be achievable via best response, which is computed by gradient projection. The proposed solution is also extended to an online version, which is able to alleviate the impact of the price prediction error. Numerical results demonstrate that the proposed approach can effectively shift the peak-hour demand to off-peak hours, enhance the welfare of each user, and minimize the peak-to-average ratio. The scalability of the approach and the impact of the user number are also investigated.

Published in:

Smart Grid, IEEE Transactions on  (Volume:5 ,  Issue: 3 )