By Topic

Dynamic Stochastic Blockmodels for Time-Evolving Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xu, K.S. ; Technicolor Palo Alto Res. Center, Palo Alto, CA, USA ; Hero, A.O.

Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we present a state-space model for dynamic networks that extends the well-known stochastic blockmodel for static networks to the dynamic setting. We fit the model in a near-optimal manner using an extended Kalman filter (EKF) augmented with a local search. We demonstrate that the EKF-based algorithm performs competitively with a state-of-the-art algorithm based on Markov chain Monte Carlo sampling but is significantly less computationally demanding.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:8 ,  Issue: 4 )