By Topic

Fiber Optic Liquid Level Sensor Based on Integration of Lever Principle and Optical Interferometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Xinpu Zhang ; Coll. of Phys. & Optoelectron. Eng., Dalian Univ. of Technol., Dalian, China ; Wei Peng ; Zigeng Liu ; Zhenfeng Gong

We present a fiber-optic liquid level sensor that is conducted by a combination of optical interferometry and lever principle. The sensing unit is a Mach-Zehnder interferometer (MZI), which is formed by sandwiching a piece of photonic crystal fiber (PCF) between two single-mode fibers (SMFs). The measuring equipment is composed of a rotatable lever and a fixed link. The rotatable lever includes two different length arms, i.e., L1 and L2. Both ends of the MZI are glued on the tip of the L2 arm and the fixed link using ethoxyline, respectively. A hanging stick, which is dipped into a liquid tank, is directly mounted on the other end of the rotatable lever. The buoyancy will increase as the stick depth of immersion into the liquid increases. The tension the MZI subjected will increase according to the proportion of L1/L2 on account of the lever principle. The sensitivity of the sensor could be regulated with different ratios of lever arms. In our experiment, a maximum sensitivity of 111.27 pm/mm was obtained with a 1 : 7.8 ratio of two lever arms L1/L2. The demonstrated liquid level sensor has the advantages of simple structure, easy fabrication, low cost, and high sensitivity.

Schematics of fiber optic liquid level sensor system based on a combination of optical interferometry and leverage principle (a) Lever based system setup for liquid level measurement. (b) Photonic crystal fiber based MZI configuration. Schematics of fiber optic liquid level sensor system based on a combination of optical interferometry and leverage principle (a) Lever based system setup for liquid level measurement. (b) Photonic crystal fiber based MZI configuration.

Published in:

Photonics Journal, IEEE  (Volume:6 ,  Issue: 2 )