By Topic

Gradient-Based Adaptive Stochastic Search for Non-Differentiable Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Enlu Zhou ; Stewart Sch. of Ind. & Syst. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Jiaqiao Hu

In this paper, we propose a stochastic search algorithm for solving general optimization problems with little structure. The algorithm iteratively finds high quality solutions by randomly sampling candidate solutions from a parameterized distribution model over the solution space. The basic idea is to convert the original (possibly non-differentiable) problem into a differentiable optimization problem on the parameter space of the parameterized sampling distribution, and then use a direct gradient search method to find improved sampling distributions. Thus, the algorithm combines the robustness feature of stochastic search from considering a population of candidate solutions with the relative fast convergence speed of classical gradient methods by exploiting local differentiable structures. We analyze the convergence and converge rate properties of the proposed algorithm, and carry out numerical study to illustrate its performance.

Published in:

IEEE Transactions on Automatic Control  (Volume:59 ,  Issue: 7 )