By Topic

Genetic algorithm optimisation for maximum likelihood joint channel and data estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, S. ; Dept. of Electr. & Electron. Eng., Portsmouth Univ., UK ; Wu, Y.

A novel blind equalisation scheme is developed based on maximum likelihood (ML) joint channel and data estimation. In this scheme, the joint ML optimisation is decomposed into a two-level optimisation loop. An efficient version of genetic algorithms (GAs), known as a micro GA, is employed at the upper level to identify the unknown channel model and the Viterbi algorithm (VA) is used at the lower level to provide the maximum likelihood sequence estimation of the transmitted data sequence. The proposed GA based scheme is accurate and robust, and has a fast convergence rate, as is demonstrated in simulation

Published in:

Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on  (Volume:2 )

Date of Conference:

12-15 May 1998