Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A True 0.4-V Delta–Sigma Modulator Using a Mixed DDA Integrator Without Clock Boosted Switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Younghyun Yoon ; Dept. of Electr. Eng., Hanyang Univ., Ansan, South Korea ; Hyungdong Roh ; Jeongjin Roh

This brief proposes a delta-sigma modulator that operates at extremely low voltage without using a clock boosting technique. To maintain the advantages of a discrete-time integrator in oversampled data converters, a mixed differential difference amplifier (DDA) integrator is developed that removes the input sampling switch in a switched-capacitor integrator. Conventionally, many low-voltage delta-sigma modulators have used high-voltage generating circuits to boost the clock voltage levels. A mixed DDA integrator with both a switched-resistor and a switched-capacitor technique is developed to implement a discrete-time integrator without clock boosted switches. The proposed mixed DDA integrator is demonstrated by a third-order delta-sigma modulator with a feedforward topology. The fabricated modulator shows a 68-dB signal-to-noise-plus-distortion ratio for a 20-kHz signal bandwidth with an oversampling ratio of 80. The chip consumes 140 μW of power at a true 0.4-V power supply, which is the lowest voltage without a clock boosting technique among the state-of-the-art modulators in this signal band.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:61 ,  Issue: 4 )