Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Greedy Adaptive Linear Compression in Signal-Plus-Noise Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Entao Liu ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Chong, E.K.P. ; Scharf, L.L.

In this paper, we examine adaptive compression policies, when the sequence of vector-valued measurements to be compressed is noisy and the compressed variables are themselves noisy. The optimization criterion is information gain. In the case of sequential scalar compressions, the unit-norm compression vectors that greedily maximize per-stage information gain are eigenvectors of an a priori error covariance matrix, and the greedy policy selects them according to eigenvalues of a posterior covariance matrix. These eigenvalues depend on all previous compressions and are computed recursively. A water-filling solution is given for the optimum compression policy that maximizes net information gain, under a constraint on the average norm of compression vectors. We provide sufficient conditions under which the greedy policy for maximizing stepwise information gain actually is optimal in the sense of maximizing the net information gain. In the case of scalar compressions, our examples and simulation results illustrate that the greedy policy can be quite close to optimal when the noise sequences are white.

Published in:

Information Theory, IEEE Transactions on  (Volume:60 ,  Issue: 4 )