By Topic

Novel Example-Based Method for Super-Resolution and Denoising of Medical Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dinh-Hoan Trinh ; Center for Inf. & Comput., Hanoi, Vietnam ; Luong, M. ; Dibos, F. ; Rocchisani, J.-M.
more authors

In this paper, we propose a novel example-based method for denoising and super-resolution of medical images. The objective is to estimate a high-resolution image from a single noisy low-resolution image, with the help of a given database of high and low-resolution image patch pairs. Denoising and super-resolution in this paper is performed on each image patch. For each given input low-resolution patch, its high-resolution version is estimated based on finding a nonnegative sparse linear representation of the input patch over the low-resolution patches from the database, where the coefficients of the representation strongly depend on the similarity between the input patch and the sample patches in the database. The problem of finding the nonnegative sparse linear representation is modeled as a nonnegative quadratic programming problem. The proposed method is especially useful for the case of noise-corrupted and low-resolution image. Experimental results show that the proposed method outperforms other state-of-the-art super-resolution methods while effectively removing noise.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 4 )