Cart (Loading....) | Create Account
Close category search window
 

An Improved Ensemble Learning Method for Classifying High-Dimensional and Imbalanced Biomedicine Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hualong Yu ; Sch. of Comput. Sci. & Eng., Jiangsu Univ. of Sci. & Technol., Zhenjiang, China ; Jun Ni

Training classifiers on skewed data can be technically challenging tasks, especially if the data is high-dimensional simultaneously, the tasks can become more difficult. In biomedicine field, skewed data type often appears. In this study, we try to deal with this problem by combining asymmetric bagging ensemble classifier (asBagging) that has been presented in previous work and an improved random subspace (RS) generation strategy that is called feature subspace (FSS). Specifically, FSS is a novel method to promote the balance level between accuracy and diversity of base classifiers in asBagging. In view of the strong generalization capability of support vector machine (SVM), we adopt it to be base classifier. Extensive experiments on four benchmark biomedicine data sets indicate that the proposed ensemble learning method outperforms many baseline approaches in terms of Accuracy, F-measure, G-mean and AUC evaluation criterions, thus it can be regarded as an effective and efficient tool to deal with high-dimensional and imbalanced biomedical data.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:11 ,  Issue: 4 )

Date of Publication:

July-Aug. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.