Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Pedestrian Simultaneous Localization and Mapping in Multistory Buildings Using Inertial Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Puyol, M.G. ; Inst. of Commun. & Navig., German Aerosp. Center (DLR), Wessling, Germany ; Bobkov, D. ; Robertson, P. ; Jost, T.

Pedestrian navigation is an important ingredient for efficient multimodal transportation, such as guidance within large transportation infrastructures. A requirement is accurate positioning of people in indoor multistory environments. To achieve this, maps of the environment play a very important role. FootSLAM is an algorithm based on the simultaneous localization and mapping (SLAM) principle that relies on human odometry, i.e., measurements of a pedestrian's steps, to build probabilistic maps of human motion for such environments and can be applied using crowdsourcing. In this paper, we extend FootSLAM to multistory buildings following a Bayesian derivation. Our approach employs a particle filter and partitions the map space into a grid of adjacent hexagonal prisms with eight faces. We model the vertical component of the odometry errors using an autoregressive integrated moving average (ARIMA) model and extend the geographic tree-based data structure that efficiently stores the probabilistic map, allowing real-time processing. We present the multistory FootSLAM maps that were created from three data sets collected in different buildings (one large office building and two university buildings). Hereby, the user was only carrying a single foot-mounted inertial measurement unit (IMU). We believe the resulting maps to be strong evidence of the robustness of FootSLAM. This paper raises the future possibility of crowdsourced indoor mapping and accurate navigation using other forms of human odometry, e.g., obtained with the low-cost and nonintrusive sensors of a handheld smartphone.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:15 ,  Issue: 4 )