By Topic

Regularized Tree Partitioning and Its Application to Unsupervised Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In this paper, we propose regularized tree partitioning approaches. We study normalized cut (NCut) and average cut (ACut) criteria over a tree, forming two approaches: 1) normalized tree partitioning (NTP) and 2) average tree partitioning (ATP). We give the properties that result in an efficient algorithm for NTP and ATP. In addition, we present the relations between the solutions of NTP and ATP over the maximum weight spanning tree of a graph and NCut and ACut over this graph. To demonstrate the effectiveness of the proposed approaches, we show its application to image segmentation over the Berkeley image segmentation data set and present qualitative and quantitative comparisons with state-of-the-art methods.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 4 )