By Topic

Glottal Spectral Separation for Speech Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
João P. Cabral ; Sch. of Comput. Sci. & Inf., Univ. Coll. Dublin, Dublin, Ireland ; Korin Richmond ; Junichi Yamagishi ; Steve Renals

This paper proposes an analysis method to separate the glottal source and vocal tract components of speech that is called Glottal Spectral Separation (GSS). This method can produce high-quality synthetic speech using an acoustic glottal source model. In the source-filter models commonly used in speech technology applications it is assumed the source is a spectrally flat excitation signal and the vocal tract filter can be represented by the spectral envelope of speech. Although this model can produce high-quality speech, it has limitations for voice transformation because it does not allow control over glottal parameters which are correlated with voice quality. The main problem with using a speech model that better represents the glottal source and the vocal tract filter is that current analysis methods for separating these components are not robust enough to produce the same speech quality as using a model based on the spectral envelope of speech. The proposed GSS method is an attempt to overcome this problem, and consists of the following three steps. Initially, the glottal source signal is estimated from the speech signal. Then, the speech spectrum is divided by the spectral envelope of the glottal source signal in order to remove the glottal source effects from the speech signal. Finally, the vocal tract transfer function is obtained by computing the spectral envelope of the resulting signal. In this work, the glottal source signal is represented using the Liljencrants-Fant model (LF-model). The experiments we present here show that the analysis-synthesis technique based on GSS can produce speech comparable to that of a high-quality vocoder that is based on the spectral envelope representation. However, it also permit control over voice qualities, namely to transform a modal voice into breathy and tense, by modifying the glottal parameters.

Published in:

IEEE Journal of Selected Topics in Signal Processing  (Volume:8 ,  Issue: 2 )