By Topic

Joint MCE estimation of VQ and HMM parameters for Gaussian mixture selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Herman, S.M. ; Bell Labs., Lucent Technol., Naperville, IL, USA ; Sukkar, R.A.

Vector quantization (VQ) has been explored in the past as a means of reducing likelihood computation in speech recognizers which use hidden Markov models (HMMs) containing Gaussian output densities. Although this approach has proved successful, there is an extent beyond which further reduction in likelihood computation substantially degrades the recognition accuracy. Since the components of the VQ frontend are typically designed after model training is complete, this degradation can be attributed to the fact that VQ and HMM parameters are not jointly estimated. In order to restore the accuracy of a recognizer using VQ to aggressively reduce computation, joint estimation is necessary. We propose a technique which couples VQ frontend design with minimum classification error training. We demonstrate on a large vocabulary subword task that in certain cases, our joint training algorithm can reduce the string error rate by 79% compared to that of VQ mixture selection alone

Published in:

Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on  (Volume:1 )

Date of Conference:

12-15 May 1998