Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A hidden Markov model approach to text segmentation and event tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yamron, J.P. ; Dragon Syst. Inc., Newton, MA, USA ; Carp, I. ; Gillick, L. ; Lowe, S.
more authors

Continuing progress in the automatic transcription of broadcast speech via speech recognition has raised the possibility of applying information retrieval techniques to the resulting (errorful) text. For these techniques to be easily applicable, it is highly desirable that the transcripts be segmented into stories. This paper introduces a general methodology based on HMMs and on classical language modeling techniques for automatically inferring story boundaries and for retrieving stories relating to a specific event. In this preliminary work, we report some highly promising results on accurate text. Future work will apply these techniques to errorful transcripts

Published in:

Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on  (Volume:1 )

Date of Conference:

12-15 May 1998