By Topic

Computing performance bounds of fork-join parallel programs under a multiprocessing environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lui, J.C.S. ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Shatin, Hong Kong ; Muntz, Richard R. ; Towsley, D.

We study a multiprocessing computer system which accepts parallel programs that have a fork-join computational paradigm. The multiprocessing computer system under study is modeled as K homogeneous servers, each with an infinite capacity queue. Parallel programs arrive at the multiprocessing system according to a series-parallel phase type interarrival process with mean arrival rate of h. Upon the program arrival, it forks into K-independent tasks and each task is assigned to an unique server. Each task's service time has a k-stage Erlang distribution with mean service time of λ. A parallel program is completed upon the completion of its last task. This kind of queuing model has no known closed form solution in the general (K⩾2) case. In this paper, we show that by carefully modifying the arrival and service distributions at some imbedded points in time, we can obtain tight performance bounds. We also provide a computational efficient algorithm for obtaining upper and lower bounds on the expected response time. The methodology is flexible and allows one to trade-off the tightness of the bounds and computational cost

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:9 ,  Issue: 3 )