By Topic

A practical approach to dynamic load balancing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Watts, J. ; Scalable Concurrent Programming Lab., Syracuse Univ., NY, USA ; Taylor, S.

This paper presents a cohesive, practical load balancing framework that improves upon existing strategies. These techniques are portable to a broad range of prevalent architectures, including massively parallel machines, such as the Cray T3D/E and Intel Paragon, shared memory systems, such as the Silicon Graphics PowerChallenge, and networks of workstations. As part of the work, an adaptive heat diffusion scheme is presented, as well as a task selection mechanism that can preserve or improve communication locality. Unlike many previous efforts in this arena, the techniques have been applied to two large-scale industrial applications on a variety of multicomputers. In the process, this work exposes a serious deficiency in current load balancing strategies, motivating further work in this area

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:9 ,  Issue: 3 )