Cart (Loading....) | Create Account
Close category search window
 

Thermal Characterization of THz Schottky Diodes Using Transient Current Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Khanal, S. ; Dept. of Radio Sci. & Eng., Aalto Univ., Aalto, Finland ; Kiuru, T. ; Tang, A.-Y. ; Saber, M.A.
more authors

This paper presents a new method for thermal characterization of THz Schottky diodes. The method is based on the transient current behavior, and it enables the extraction of thermal resistances, thermal time-constants, and peak junction temperatures of THz Schottky diodes. Many typical challenges in thermal characterization of small-area diode devices, particularly those related to self-heating and electrical transients, are either avoided or mitigated. The method is validated with measurements of commercially available single-anode Schottky varactor diodes. A verification routine is performed to ensure the accuracy of the measurement setup, and the characterization results are compared against an in-house measurement-based method and against simulation results of two commercial 3-D thermal simulators. For example, characterization result for the total thermal resistance of a Schottky diode with an anode area of 9 μm2 is within 10% of the average value of 4020 K/W when using all four approaches. The new method can be used to measure small diode devices with thermal time constants down to about 300 ns with the measurement setup described in the paper.

Published in:

Terahertz Science and Technology, IEEE Transactions on  (Volume:4 ,  Issue: 2 )

Date of Publication:

March 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.