Cart (Loading....) | Create Account
Close category search window
 

Risk-Aware Day-Ahead Scheduling and Real-time Dispatch for Electric Vehicle Charging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lei Yang ; Sch. of Electr., Comput. & Energy Eng., Arizona State Univ., Tempe, AZ, USA ; Junshan Zhang ; Poor, H.V.

This paper studies risk-aware day-ahead scheduling and real-time dispatch for electric vehicle (EV) charging, aiming to jointly optimize the EV charging cost and the risk of the load mismatch between the forecast and the actual EV loads, due to the random driving activities of EVs. It turns out that the consideration of the load mismatch risk in the objective function significantly complicates the risk-aware day-ahead scheduling problem (indeed it involves nonconvex optimization). A key step taken here is to utilize a hidden convexity structure to recast this problem as a two-stage stochastic linear program, and then solve it by using the L-shaped method. Since the computational complexity grows exponentially in the number of EVs, an estimation algorithm is developed based on importance sampling to mitigate the computational complexity. Further, a distributed risk-aware real-time dispatch algorithm is developed, in which the aggregator needs to compute only the shadow prices for each EV to optimize its own charging strategy in a distributed manner. It is shown, based on real data, that the proposed risk-aware day-ahead scheduling algorithm using importance sampling can significantly reduce the overall charging cost with a small number of samples.

Published in:

Smart Grid, IEEE Transactions on  (Volume:5 ,  Issue: 2 )

Date of Publication:

March 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.