By Topic

Self-adaptive partial discharge signal de-noising based on ensemble empirical mode decomposition and automatic morphological thresholding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jeffery C. Chan ; Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, St. Lucia, QLD, Australia ; Hui Ma ; Tapan K. Saha ; Chandima Ekanayake

This paper proposes a self-adaptive technique for partial discharge (PD) signal denoising with automatic threshold determination based on ensemble empirical mode decomposition (EEMD) and mathematical morphology. By introducing extra noise in the decomposition process, EEMD can effectively separate the original signal into different intrinsic mode functions (IMFs) with distinctive frequency scales. Through the kurtosis-based selection criterion, the IMFs embedded with PD impulses can be extracted for reconstruction. On the basis of mathematical morphology, an automatic morphological thresholding (AMT) technique is developed to form upper and lower thresholds for automatically eliminating the residual noise while maintaining the PD signals. The results on both simulated and real PD signals show that the above PD denoising technique is superior to wavelet transform (WT) and conventional EMD-based PD de-noising techniques.

Published in:

IEEE Transactions on Dielectrics and Electrical Insulation  (Volume:21 ,  Issue: 1 )