By Topic

TPaR: Place and Route Tools for the Dynamic Reconfiguration of the FPGA's Interconnect Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Dynamic partial reconfiguration of FPGAs enables the dynamic specialization of the circuit for the runtime needs of the application. Previously a tool flow, called the TLUT tool flow, was developed to aid the designer in applying dynamic circuit specialization (DCS) for their designs. The TLUT tool flow generates an implementation in which the lookup tables (LUTs) can be specialized during runtime. In this paper, place and route algorithms are described for the TCON tool flow. The TCON tool flow generates implementations in which not only the logic infrastructure (LUTs) is dynamically specialized, but also the routing infrastructure of the FPGA. Exploiting the reconfigurability of the FPGA interconnection network further improves area (50% to 92% less LUTs and 36% to 81% less wiring), logic depth (a 63% to 80% reduction) and power consumption. To achieve this, major changes were needed, not only in the mapping, but also in the place and route steps. This work describes the altered place and route algorithms, called TPlace and Troute.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:33 ,  Issue: 3 )