By Topic

Pre-Silicon Bug Forecast

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Qi Guo ; State Key Lab. of Comput. Archit., Inst. of Comput. Technol., Beijing, China ; Tianshi Chen ; Yunji Chen ; Rui Wang
more authors

The ever-intensifying time-to-market pressure imposes great challenges on the pre-silicon design phase of hardware. Before the tape-out, a pre-silicon design has to be thoroughly inspected by time-consuming functional verification and code review to exclude bugs. For functional verification and code review, a critical issue determining their efficiency is the allocation of resources (e.g., computational resources and manpower) to different modules of a design, which is conventionally guided by designers' experiences. Such practices, though simple and straightforward, may take high risks of wasting resources on bug-free modules or missing bugs in buggy modules, and thus could affect the success and timeline of the tape-out. In this paper, we propose a novel framework called pre-silicon bug forecast to predict the bug information of hardware designs. In this framework, bug models are built via machine learning techniques to characterize the relationship between design characteristics and the bug information, which can be leveraged to predict how bugs distribute in different modules of the current design. Such predicted bug information is adequate to regulate the resources among different modules to achieve efficient functional verification and code review. To evaluate the effectiveness of the proposed pre-silicon bug forecast framework, we conducted detailed experiments on several open-source hardware projects. Moreover, we also investigate the impacts of different learning techniques and different sets of characteristic on the performance of bug models. Experimental results show that with appropriate learning techniques and characteristics, about 90% modules could be correctly predicted as buggy or clean and the number of bugs of each module could also be accurately predicted.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:33 ,  Issue: 3 )