By Topic

Hybrid Hinge Model for Polarization-Mode Dispersion in Installed Fiber Transmission Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schuster, J. ; Dept. of Math., State Univ. of New York at Buffalo, Buffalo, NY, USA ; Marzec, Z. ; Kath, W.L. ; Biondini, G.

A hybrid hinge model is proposed to characterize polarization-mode dispersion (PMD) in installed optical fiber communication systems. The model reduces to previously considered PMD generation mechanisms in special cases, but can also simulate more general hinge behavior. A combination of importance sampling and the cross entropy method is used to calculate the probability density function of the differential group delay and the outage probability for individual wavelength bands, and results are averaged over all wavelength bands to obtain the non-compliant capacity ratio (NCR). These results suggest that, for practical outage specifications, the NCR of a system lies between upper and lower bounds provided by the isotropic hinge model and the waveplate hinge model, respectively.

Published in:

Lightwave Technology, Journal of  (Volume:32 ,  Issue: 7 )