By Topic

Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 \mu m Wavelength

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Zhengqian Luo ; Dept. of Electron. Eng., Xiamen Univ., Xiamen, China ; Chun Liu ; Yizhong Huang ; Duanduan Wu
more authors

In this paper, Topological insulator (TI) Bi2Se3 as a saturable absorber (SA) is exploited to Q-switch fiber lasers at 2 μm wavelength for the first time. Few-layer TI:Bi 2Se 3 nanosheets in CS-HAc solution are prepared by the liquid-phase exfoliation method, and the thin 2-D structure with the thickness of 3-5 layers is well characterized. The open-aperture Z-scan experiment shows that the few-layer TI:Bi 2Se 3 has the saturable optical intensity of 41 MW/cm 2 at 800 nm and the modulation depth of 3.7%. The optical deposition technique is used to efficiently assemble the TI:Bi 2Se 3 nanosheets in the solution onto a fiber ferrule, therefore constructing a fiber-compatible TI-based SA (FC-TISA). By further inserting the FC-TISA into a diode-pumped Tm 3+-doped double-clad fiber laser (TM-DCFL), stable Q-switching operation at 1.98 μm is successfully achieved with the shortest pulse width of 4.18 μs and the tunable repetition rate from 8.4 to 26.8 kHz. In particular, the TM-DCFL can deliver large-energy Q-switched pulses with the pulse energy as high as 313 nJ (corresponding to average output power of 8.4 mW). Our results suggest that TI-based SA is suitable for pulsed laser operation in the eye-safe region of 2 μm, and potentially develops as an ultra-broadband photonics device.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:20 ,  Issue: 5 )