By Topic

Aerospace lithium solid polymer batteries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Teofilo, V.L. ; Lockheed Martin Missiles & Space, Sunnyvale, CA, USA ; Nadell, J.N.

Lockheed Martin Missiles and Space and Ultralife Batteries, Inc. are developing batteries for spacecraft and launchers based on Li-ion solid-polymer-electrolyte cell technology. These cells utilize a carbon anode, a manganese dioxide cathode and a solid polymer electrolyte. Electrode and electrolyte layers are thin and flexible. The electrode assembly is easily fabricated into thin, flat prismatic shapes using ordinary lamination techniques and is hermetically sealed in thin foil packaging. Cells ranging in capacity from 4 Ah to 50 Ah have been designed and are in development testing. The packaged cells have specific energies in excess of 100 Wh/kg. Prototype 30 volt batteries have also been designed and are being assembled and tested along with the critical battery cell charge management controllers needed to recharge all cells to full capacity while preventing overvoltage damage. The major results of this development effort are reviewed and the key issues for advancing this technology to flight qualification demonstrations are discussed

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:13 ,  Issue: 5 )