Cart (Loading....) | Create Account
Close category search window

Analysis, design, and experiments of a high-power-factor electronic ballast

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinrong Qian ; Dept. of Electr. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Lee, F.C. ; Yamauchi, T.

A charge pump power-factor-correction (CPPFC) power converter is first derived, and its unity power factor condition is then reviewed. A single-stage power-factor-correction electronic ballast using the charge pump concept is analyzed. The design criteria are derived to optimize the electronic ballast based on the steady-state analysis. Constant lamp power operations associated with its control are also discussed. Large signal simulation and experimental results verify the theoretical analysis. It is shown that the designed electronic ballast has 0.995 power factor and 5% total harmonic distortion (THD) with lamp power variation within ±15% when the line input voltage changes ±10%

Published in:

Industry Applications, IEEE Transactions on  (Volume:34 ,  Issue: 3 )

Date of Publication:

May/Jun 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.