By Topic

Analysis and design of a high power factor, single-stage electronic dimming ballast

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsai-Fu Wu ; Dept. of Electr. Eng., Nat. Chung Cheng Univ., Chia-Yi, Taiwan ; Te-Hung Yu

This paper presents the analysis, design and practical consideration of a single-stage electronic dimming ballast with unity power factor. The power stage of the ballast is derived from combining a buck-boost power converter and a half-bridge series-resonant parallel-loaded inverter (SRPLI). With the plasma model of the lamp, the analysis of the ballast is carried out, from which the key equations used for dimming control are derived. Starting performance and dimming consideration are also addressed in the paper. In this dimming ballast, both pulsewidth modulation (PWM) and variable-frequency control strategies are employed. The discussed ballast with the controls can save a controller and a switch driver, reduce size and cost, and possibly increase system reliability over conventional two-stage systems in the applications with moderate power level. Simulated and experimental results of the ballast for an OSRAM T8 32-W lamp are used to verify the discussion

Published in:

Industry Applications, IEEE Transactions on  (Volume:34 ,  Issue: 3 )