By Topic

Improving Cochlear Implant Properties Through Conductive Hydrogel Coatings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Rachelle T. Hassarati ; Grad. Sch. of Biomed. Eng., Univ. of New South Wales, Sydney, NSW, Australia ; Wolfram F. Dueck ; Claudia Tasche ; Paul M. Carter
more authors

Conductive hydrogel (CH) coatings for biomedical electrodes have shown considerable promise in improving electrode mechanical and charge transfer properties. While they have desirable properties as a bulk material, there is limited understanding of how these properties translate to a microelectrode array. This study evaluated the performance of CH coatings applied to Nucleus Contour Advance cochlear electrode arrays. Cyclic voltammetry and biphasic stimulation were carried out to determine electrical properties of the coated arrays. Electrical testing demonstrated that CH coatings supported up to 24 times increase in charge injection limit. Reduced impedance was also maintained for over 1 billion stimulations without evidence of delamination or degradation. Mechanical studies performed showed negligible effect of the coating on the pre-curl structure of the Contour Advance arrays. Testing the coating in a model human scala tympani confirmed that adequate contact was maintained across the lateral wall. CH coatings are a viable, stable coating for improving electrical properties of the platinum arrays while imparting a softer material interface to reduce mechanical mismatch. Ultimately, these coatings may act to minimize scar tissue formation and fluid accumulation around electrodes and thus improve the electrical performance of neural implants.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:22 ,  Issue: 2 )