By Topic

Complexity and rate-distortion tradeoff via successive refinement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
No, A. ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Ingber, A. ; Weissman, T.

We demonstrate how successive refinement ideas can be used in point-to-point lossy compression problems in order to reduce complexity. We show two examples, the binary-Hamming and quadratic-Gaussian cases, in which a layered code construction results in a low complexity scheme that attains optimal performance. For example, when the number of layers grows with the block length n, we show how to design an O(nlog(n)) algorithm that asymptotically achieves the rate distortion bound. We then show that with the same scheme, used with a fixed number of layers, successive refinement is achieved in the classical sense, and at the same time the second order performance (i.e. dispersion) is also tight.

Published in:

Communication, Control, and Computing (Allerton), 2013 51st Annual Allerton Conference on

Date of Conference:

2-4 Oct. 2013