By Topic

Identifying cancer biomarkers through a network regularized Cox model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ying-Wooi Wan ; Dept. of OBGYN, Baylor Coll. of Med., Houston, TX, USA ; Nagorski, J. ; Allen, G.I. ; Zhaohui Li
more authors

A central problem in cancer genomics is to identify interpretable biomarkers for better disease prognosis. Many of the biomarkers identified through Cox Proportional Hazard (PH) models are biologically uninterpretable. We propose the use of graph Laplacian regularized Cox PH model to integrate biological networks into the feature selection problem in survival analysis. Simulation studies demonstrate that the performance of the proposed algorithm is superior to L1 and L1+L2 regularized Cox PH models. Utility of this algorithm is also validated by its ability to identify key known biomarkers such as p53 and myc in estrogen receptor positive breast cancer patients using genomic abberration data generated by the Cancer Genome Altas consortium. With the rapid expansion of our knowledge of biological networks, this approach will become increasingly useful for mining high-throughput genomic datasets.

Published in:

Genomic Signal Processing and Statistics (GENSIPS), 2013 IEEE International Workshop on

Date of Conference:

17-19 Nov. 2013