By Topic

Development of an Airborne Ground Penetrating Radar System: Antenna Design, Laboratory Experiment, and Numerical Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lei Fu ; Sch. of Geo-Exploration Sci. & Technol., Jilin Univ., Changchun, China ; Sixin Liu ; Lanbo Liu ; Linlin Lei

A stepped-frequency continuous wave (SFCW) airborne ground penetrating radar (GPR) system was built using a vector network analyzer (VNA), an optical-to-electric ( mmb O/mmb E) converter, an electric-to-optical ( mmb E/mmb O) converter, and the resistively loaded planer dipole antennas. The resistively loaded antennas are based on the Altshuler discrete resistive loading approach. The distance from the loading point to the feeding point and the resistance has been optimized; in addition, a balun at the feeding point was introduced to convert the unbalanced signal from the coax to balanced signal. Test results show that the manufactured antennas have a wide bandwidth frequency range from 55 to 275 MHz. A laboratory experiment using the developed system was conducted in a building with high ceilings. The results registered all basic features including the ground, sub-ground surface, and the lamp hanging from the ceiling. Numerical modeling by finite-difference time-domain (FDTD) method using two-dimensional (2-D) transverse electric (TE) verifies the presence of these registered features in the measured airborne data. A bedrock outcrop in ice sheet model is reconstructed based on a piece of real airborne GPR data, the modeling profile results show excellent consistent with the observed data. The capability of airborne GPR detection of subsurface features is clearly validated.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 3 )